

 WARNING: this project has been retired.
Please migrate to
geem-lab/overreact [https://github.com/geem-lab/overreact].

pyrrole

[image: Latest Documentation Status] [https://pyrrole.readthedocs.io/en/latest/?badge=latest] [image: Travis CI Status] [https://travis-ci.org/dudektria/pyrrole] [image: Python Package Index (PyPI)] [https://badge.fury.io/py/pyrrole]

A Python package for solving chemical problems with computational modeling.

Usage example

As a usage example, let’s calculate the energy barrier involved in nitrogen inversion in ammonia [https://en.wikipedia.org/wiki/Nitrogen_inversion].

[image: Nitrogen inversion in ammonia]

When ammonia turns “inside out”, it passes through a planar transition state (image in public domain [https://commons.wikimedia.org/wiki/File:Nitrogen-inversion-3D-balls.png]).

We do this in three simple steps (only eight lines of code):

	Get the data

We first obtain the raw data, which will later be fed to our chemical model.
Below we read computational chemistry logfiles of both ground and transition states 1.

>>> from pyrrole.atoms import read_cclib, create_data
>>> gs = read_cclib("data/ammonia/ammonia.out", name="NH3(g)")
>>> ts = read_cclib("data/ammonia/invers.out", name="NH3(g)#")
>>> data = create_data(gs, ts)

Pyrrole uses cclib [https://cclib.github.io/] for reading logfiles, which is compatible with all major computational chemistry packages [https://cclib.github.io/#summary].
You could also want to read tabular data from a file [https://pyrrole.readthedocs.io/en/latest/using-data-sets.html#reading-local-files] (or even from the web [https://pyrrole.readthedocs.io/en/latest/using-data-sets.html#reading-the-web]) using pandas [https://pandas.pydata.org/].

	Specify the model

We now describe our model.
This is accomplished through chemical equations:

>>> from pyrrole import ChemicalEquation
>>> equation = ChemicalEquation("NH3(g) -> NH3(g)#", data)

While model above consists of a single ChemicalEquation, you could create complex models with multiple chemical equations with ChemicalSystem objects.
You might want to store your complex models in text files too.

	Obtain the results

Simply let pyrrole calculate the energy barrier:

>>> results = equation.to_series()
>>> results["freeenergy"] * 2625.4996382852164 # Hartree to kJ/mol
19.30952589472923

(As a side note, the reference value is 21.162 kJ/mol 2.)

Interested? Have another example [https://pyrrole.readthedocs.io/en/latest/getting-started.html].

	1

	Optimizations and frequency calculations of both ammonia and the planar transition state were performed at PBEh-3c [https://doi.org/10.1063/1.4927476] using the ORCA [https://orcaforum.cec.mpg.de/] electronic structure package (version 4.0.1.2). Logfiles can be found in the project’s repository [https://github.com/dudektria/pyrrole/tree/master/data].

	2

	Chem. Phys. Lett., 2003, 370 (3), pp 360-365 DOI: 10.1016/S0009-2614(03)00107-6 [https://doi.org/10.1016/S0009-2614(03)00107-6].

Installation

You can get the library directly from PyPI [https://pypi.org/project/pyrrole/]:

$ pip install pyrrole

[image: pyrrole]

Documentation

	Getting started
	Solubility of acetic acid
	The data object

	The ChemicalSystem object

	Using data objects
	Reading local files

	Reading the web

	Systems and equations
	The ChemicalSystem object revisited

	The ChemicalEquation object

Indices and tables

	Index

	Module Index

	Search Page

Getting started

In simple terms, the basic usage of pyrrole can be outlined in three steps:

	Create a data object (this is actually a pandas.DataFrame).

	Create a ChemicalSystem object.

	Manipulate a ChemicalSystem object.

In order to understand each of them, let’s walk through core API concepts as we tackle one everyday use case: the calculation of solvation free energy of acetic acid in water.

Solubility of acetic acid

Let’s say that, after optimization and frequency calculations of acetic acid [https://en.wikipedia.org/wiki/Acetic_acid] were done (both in vacuuo and using an implicit solvation method 1), we wanted to calculate the solvation energy [https://goldbook.iupac.org/html/S/ST07102.html] of acetic acid in water.
This simple model perfectly exemplifies the usage of pyrrole, starting with the creation of a data object.

The data object

The data object consists of a pandas.DataFrame whose records represent chemical species.
For our specific problem, we read logfiles (using the read_cclib function, which parses logfiles with the cclib library [https://cclib.github.io/]) and store them in the required tabular form (using create_data):

>>> from pyrrole.atoms import read_cclib, create_data
>>> gas = read_cclib("data/acetate/acetic_acid.out", name="AcOH(g)")
>>> aquo = read_cclib("data/acetate/acetic_acid@water.out", name="AcOH(aq)")
>>> data = create_data(gas, aquo)

Each row of data above contains information found in a single logfile:

>>> columns = ["enthalpy", "entropy", "freeenergy"]
>>> data[columns] # doctest: +NORMALIZE_WHITESPACE
 enthalpy entropy freeenergy
name
AcOH(g) -228.533374 0.031135 -228.564509
AcOH(aq) -228.544332 0.030936 -228.575268

The energy values above are in Hartree [https://en.wikipedia.org/wiki/Hartree], which is the convention in the cclib project.
Learn more about data objects in Using data objects.

The ChemicalSystem object

We are now in position to define our chemical system with ChemicalSystem.
Our model consists of a single equilibrium between gas phase and aqueous acetic acid:

>>> from pyrrole import ChemicalSystem
>>> system = ChemicalSystem("AcOH(g) <=> AcOH(aq)", data)
>>> system
ChemicalSystem(["AcOH(g) <=> AcOH(aq)"])

Usage of ChemicalSystem

ChemicalSystem objects can be manipulated in a variety of ways.
For instance, they can be converted to pandas.DataFrame (with the ChemicalSystem.to_dataframe method):

>>> reactions = system.to_dataframe()
>>> reactions[columns] # doctest: +NORMALIZE_WHITESPACE
 enthalpy entropy freeenergy
chemical_equation
AcOH(g) <=> AcOH(aq) -0.010958 -0.000198 -0.010759

Again, energy values are given in Hartree.
Conversion factors can be used for handling other units (with the help of the scipy.constants module):

>>> from scipy.constants import kilo, N_A, physical_constants
>>> hartree, _, _ = physical_constants["Hartree energy"]
>>> factor = hartree * N_A / kilo # Hartree to kJ/mol
>>> factor
2625.4996382852164

The calculated factor can be used to convert a whole table if so desired:

>>> reactions[columns] * factor # doctest: +NORMALIZE_WHITESPACE
 enthalpy entropy freeenergy
chemical_equation
AcOH(g) <=> AcOH(aq) -28.76991 -0.521109 -28.248775

(By the way, the reported experimental value for the solvation free energy of acetic acid in water is -28.0 kJ/mol 2.)

Now we’re ready to start Using data objects.

	1

	Calculations were done at PBEh-3c [https://doi.org/10.1063/1.4927476]/SMD [https://doi.org/10.1021/jp810292n] (water) using the ORCA [https://orcaforum.cec.mpg.de/] electronic structure package (version 4.0.1.2). Logfiles can be found in the project’s repository [https://github.com/dudektria/pyrrole/tree/master/data].

	2

	J. Phys. Chem. B, 2009, 113 (18), pp 6378-6396 DOI: 10.1021/jp810292n [https://doi.org/10.1021/jp810292n] (supporting information).

Using data objects

Any pandas.DataFrame indexed by names of chemical species is a valid data object in pyrrole 1:

>>> import pandas as pd
>>> data = pd.DataFrame(
... [{'name': 'CO3-2(aq)', 'freeenergy': -527.8},
... {'name': 'HCO3-(aq)', 'freeenergy': -586.85},
... {'name': 'H2CO3(aq)', 'freeenergy': -623.1},
... {'name': 'OH-(aq)', 'freeenergy': -157.2},
... {'name': 'H2O(l)', 'freeenergy': -237.14}])
>>> data = data.set_index('name')
>>> data # doctest: +NORMALIZE_WHITESPACE
 freeenergy
name
CO3-2(aq) -527.80
HCO3-(aq) -586.85
H2CO3(aq) -623.10
OH-(aq) -157.20
H2O(l) -237.14

The pandas library [https://pandas.pydata.org/], a dependency of pyrrole, can be used to create data objects.
Below are examples of creating data objects from different sources.

Reading local files

Pandas can read data sets in various formats, such as
comma-separated values (CSV) [https://en.wikipedia.org/wiki/Comma-separated_values],
Google BigQuery [https://en.wikipedia.org/wiki/BigQuery],
Hierarchical Data Format (HDF) [https://en.wikipedia.org/wiki/Hierarchical_Data_Format],
JavaScript Object Notation (JSON) [http://www.json.org/],
Microsoft Excel [https://en.wikipedia.org/wiki/Microsoft_Excel],
and many other supported format types [https://pandas.pydata.org/pandas-docs/stable/io.html]:

>>> data = pd.read_hdf("data/acetate/data.h5")
>>> data[['jobfilename', 'freeenergy', 'enthalpy']]
 jobfilename freeenergy enthalpy
0 data/acetate/acetate.out -228.000450 -227.969431
1 data/acetate/acetate@water.out -228.120113 -228.089465
2 data/acetate/acetic_acid.out -228.564509 -228.533374
3 data/acetate/acetic_acid@water.out -228.575268 -228.544332

Pyrrole requires indices to represent names of chemical species, which is, like above, not always the case.
Setting meaningful indices can be accomplished by feeding a custom function to data.apply:

>>> def update(series):
... """Compute a new column 'name' and add it to row."""
... series['name'] = (series['jobfilename']
... .replace('data/acetate/', '')
... .replace('.out', ''))
... series['name'] = (series['name']
... .replace('acetate', 'AcO-')
... .replace('acetic_acid', 'AcOH'))
... series['name'] = series['name'].replace('@water', '(aq)')
... if '(aq)' not in series['name']:
... series['name'] += "(g)"
... return series

The function above should be applied to the data object, which can then be reindexed:

>>> data = data.apply(update, axis='columns').set_index('name')
>>> data[['jobfilename', 'freeenergy', 'enthalpy']] # doctest: +NORMALIZE_WHITESPACE
 jobfilename freeenergy enthalpy
name
AcO-(g) data/acetate/acetate.out -228.000450 -227.969431
AcO-(aq) data/acetate/acetate@water.out -228.120113 -228.089465
AcOH(g) data/acetate/acetic_acid.out -228.564509 -228.533374
AcOH(aq) data/acetate/acetic_acid@water.out -228.575268 -228.544332

The data object is now ready to be used:

>>> from pyrrole import ChemicalSystem
>>> system = ChemicalSystem(['AcO-(g) <=> AcO-(aq)',
... 'AcOH(g) <=> AcOH(aq)'],
... data['freeenergy'])
>>> system.to_dataframe() # doctest: +NORMALIZE_WHITESPACE
 freeenergy
chemical_equation
AcO-(g) <=> AcO-(aq) -0.119663
AcOH(g) <=> AcOH(aq) -0.010759

In Getting started, we showed how to use create_data to produce a data object by reading output files from computational chemistry programs.
Reading lots of logfiles is slow, which is why storing the data in a file translates to faster retrievals later.
This can be accomplished with ccframe [http://cclib.github.io/how_to_parse.html#ccframe], a command-line tool that is part of cclib [http://cclib.github.io/] (a dependency of pyrrole).
In fact, the file data.h5 used in the example above was produced using ccframe:

$ ccframe -O data/acetate/data.h5 data/acetate*out \
 data/acetic_acid*out

Learn more about ccframe in both its help page ($ ccframe -h) and documentation [http://cclib.github.io/how_to_parse.html#ccframe].

Reading the web

There’s a lot of freely available data on the internet.
For instance, NIST [https://www.nist.gov/] offers enthalpies of formation at 0K [https://cccbdb.nist.gov/hf0k.asp] (in kJ/mol).
Luckily, pandas supports reading HTML tables [https://pandas.pydata.org/pandas-docs/stable/io.html#html] directly:

>>> url = "https://cccbdb.nist.gov/hf0k.asp"
>>> data = pd.read_html(url, header=0)[3] # fourth table in page
>>> data = data.set_index("Species")
>>> data = data[["Name", "Hfg 0K", "DOI"]]
>>> data.head() # doctest: +NORMALIZE_WHITESPACE
 Name Hfg 0K DOI
Species
D Deuterium atom 219.8 NaN
H Hydrogen atom 216.0 10.1002/bbpc.19900940121
H+ Hydrogen atom cation 1528.1 NaN
D2 Deuterium diatomic 0.0 NaN
H2 Hydrogen diatomic 0.0 10.1002/bbpc.19900940121

This data allows us to calculate the bond-dissociation enthalpy [https://en.wikipedia.org/wiki/Bond-dissociation_energy] of the hydrogen molecule at 0K, for instance:

>>> from pyrrole import ChemicalEquation
>>> equation = ChemicalEquation("H2 -> 2 H", data)
>>> equation.to_series()
Hfg 0K 432.0
Name: H2 -> 2 H, dtype: float64

That’s 432 kJ/mol, or 103.3 kcal/mol.

It’s time to take a deeper look at Systems and equations.

	1

	Obtained from standard Gibbs free energy of formation [https://en.wikipedia.org/wiki/Standard_Gibbs_free_energy_of_formation].

Systems and equations

The ChemicalSystem object revisited

In Getting started, we saw the basics of chemical systems.

Drawing.

Internally, a ChemicalSystem object consists of individual ChemicalEquation objects, which can be manipulated on their own.

The ChemicalEquation object

Single chemical equations in pyrrole are handled by ChemicalEquation objects.
A special mini-language is used to define chemical equations in a way that
makes it easy to simply copy and paste from the web.
For instance, the following metal displacement was obtained from a Wikipedia entry [https://en.wikipedia.org/wiki/Redox#Metal_displacement]:

>>> from pyrrole import ChemicalEquation
>>> half_zinc = ChemicalEquation('Zn(s) -> Zn+2(aq) + 2 e-')
>>> half_copper = ChemicalEquation('Cu+2(aq) + 2 e- <- Cu(s)')

ChemicalEquation objects can be manipulated just like vectors, i.e., summed and multiplied by scalar values:

>>> half_zinc - half_copper
ChemicalEquation('Cu+2(aq) + Zn(s) -> Cu(s) + Zn+2(aq)')

Stoichiometry coefficients can be obtained individually:

>>> half_zinc.coefficient['e-']
2.0

There’s no need to use chemical formulae for chemical species.
Any mix of printable characters can be used:

>>> ChemicalEquation('cis-A <=> trans-A')
ChemicalEquation('cis-A <=> trans-A')

Index

pyrrole

	pyrrole package
	Submodules
	pyrrole.atoms module

	pyrrole.core module

	pyrrole.drawing module

pyrrole.atoms module

pyrrole.core module

pyrrole.drawing module

pyrrole package

Submodules

	pyrrole.atoms module

	pyrrole.core module

	pyrrole.drawing module

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/Nitrogen-inversion-3D-balls.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 pyrrole

 		
 Getting started

 		
 Solubility of acetic acid

 		
 The data object

 		
 The ChemicalSystem object

 		
 Using data objects

 		
 Reading local files

 		
 Reading the web

 		
 Systems and equations

 		
 The ChemicalSystem object revisited

 		
 The ChemicalEquation object

_static/up-pressed.png

_static/up.png

